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Abstract
The large-n expansion is developed for the study of critical behaviour of
d-dimensional systems at m-axial Lifshitz points with an arbitrary number m
of modulation axes. The leading nontrivial contributions to O(1/n) are derived
for the two independent correlation exponents ηL2 and ηL4, and the related
anisotropy index θ . The series coefficients of these 1/n corrections are given
for general values of m and d with 0 � m � d and 2 + m/2 < d < 4 + m/2
in the form of integrals. For special values of m and d such as (m, d) = (1, 4),
they can be computed analytically, but in general their evaluation requires
numerical means. The 1/n corrections are shown to reduce in the appropriate
limits to those of known large-n expansions for the case of d-dimensional
isotropic Lifshitz points and critical points, respectively, and to be in conformity
with available dimensionality expansions about the upper and lower critical
dimensions. Numerical results for the 1/n coefficients of ηL2, ηL4 and θ are
presented for the physically interesting case of a uniaxial Lifshitz point in three
dimensions, as well as for some other choices of m and d . A universal coefficient
associated with the energy-density pair correlation function is calculated to
leading order in 1/n for general values of m and d .

1. Introduction

Systems exhibiting critical behaviour can be divided into universality classes such that all
members of a given class have the same universal critical properties (Fisher 1983). The
universality classes are represented by field theories, such as the n-component φ4 models in
d space dimensions, which are nontrivial whenever d is less than the upper critical dimension
d∗ above which Landau theory holds. Proper analyses of such field theories usually require
sophisticated tools such as renormalization group approaches, elaborate numerical simulations
or a combination of the two (Wilson and Kogut 1974, Domb and Green 1976).
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The commonly employed successful analytical methods are dimensionality expansions
about the upper and lower critical dimensions d∗ and d� (Wilson and Fisher 1972, Polyakov
1975, Brézin and Zinn-Justin 1976a, 1976b, Bardeen et al 1976), the massive renormalization
group (RG) approach in fixed dimensions (Parisi 1980) and the 1/n expansion in inverse
powers of the number n of order parameter components (Ma 1973, Abe 1973). Remarkably
precise estimates of critical indices and other universal quantities of three-dimensional systems
have been obtained both via ε = d∗ − d expansions and the massive RG approach at fixed
d by computing perturbation series to sufficiently high orders and resumming them (Guida
and Zinn-Justin 1998, Pelissetto and Vicari 2002, Privman et al 1991). Expansions about
the lower critical dimension d�, on the other hand, seem to have a more modest potential for
precise estimates, unless they are combined with information from other sources.

In this paper we will be concerned with the 1/n expansion. Our aim is to develop this
approach for the study of critical behaviour at m-axial Lifshitz points. A Lifshitz point (LP)
is a multicritical point at which a disordered phase meets both a spatially uniform ordered
and a spatially modulated ordered phase (Hornreich et al 1975a, Hornreich 1980, Selke 1992,
Diehl 2002, 2004). The disordered phase is separated from the two ordered ones by a line
of critical temperatures Tc = Tc(g), depending on a thermodynamic nonordering field g,
such as pressure or a ratio of an antiferromagnetic and a ferromagnetic coupling. The LP,
located at TL = Tc(gL), divides this critical line into two sections. In the modulated ordered
phase, the wavevector associated with the modulation, qmod = qmod(T, g), varies with g and
temperature T . Without loss of generality, we can consider the ferromagnetic case. Then
uniform order corresponds to qmod = 0, and qmod(T, g) vanishes at the LP. The LP is called
m-axial if the wavevector instability that sets in at the LP occurs in an m-dimensional subspace
of d-dimensional space, i.e. qmod ∈ R

m with 0 � m � d . The limiting values m = 0 and d
correspond to the cases of a usual critical point (CP) and the isotropic LP, respectively.

As is well known, the large-n expansion leads to self-consistent equations (Abe 1973,
Brézin et al 1976, Vasiliev et al 1981a). These are considerably more difficult to handle
than ordinary perturbation expansions, which are the essential input required in the alternative
approaches mentioned above (dimensionality expansions, massive RG approach). For this
reason the available series expansions in 1/n are restricted to low orders, even for the much
simpler case of a conventional CP. Furthermore, 1/n expansions normally converge slowly4.
On the other hand, this technique has a number of very attractive features. One is its capability
of treating fluctuation effects in a systematic, nonperturbative manner5. Another is that it can
be applied for any fixed value of d between d� and d∗. No additional expansion in a small
parameter such as ε = d∗ − d is required. Owing to these appealing properties the 1/n
expansion continues to be an important tool for the analysis of nontrivial field theories. The
spectrum of problems to which it has recently been applied and made significant contributions
is impressively rich. It ranges from the study of classical spin models (Brézin 1993, Vasiliev
1998, Zinn-Justin 1996, Moshe and Zinn-Justin 2003, Campostrini et al 1998, Pelissetto et al
2001, Gracey 2002a, 2002b), critical behaviour in bounded systems (McAvity and Osborn
1995), the physics of disordered elastic media (Le Doussal and Wiese 2003, 2004) and models
of stochastic surface growth (Doherty et al 1994) to problems of high-energy physics (Aharony
et al 2000, Moshe and Zinn-Justin 2003) and quantum phase transitions (Franz et al 2002).

4 According to some recent results (Baym et al 2000, Arnold and Tomášik 2000), the shift of the critical temperature
of a dilute Bose gas seems to be an exception to this rule.
5 A familiar numerical RG scheme having this capability employs the so-called ‘exact’ RG equations (Wilson and
Kogut 1974). Its only application to critical behaviour at LPs we are aware of is the recent work by Bervillier (2004).
This deals with the case of a uniaxial LP with n = 1 in d = 3 dimensions and uses the lowest (‘local potential’)
approximation.
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Unfortunately, for critical behaviour at LPs, hardly any results have yet been worked out
by means of it. Previous large-n analyses for general values of m ∈ [0, d] (Kalok and Obermair
1976, Hornreich et al 1977, Mukamel and Luban 1978, Frachebourg and Henkel 1993) were
restricted to the limit n → ∞. To our knowledge, the only exceptions in which corrections
to order 1/n were computed deal exclusively with the case m = d of a d-axial LP (Hornreich
et al 1975b, Nicoll et al 1976, Inayat-Hussain and Buckingham 1990).

This lack of results for general m is due to the complications arising from the combination
of two special features such systems have: (i) the anisotropic nature of scale invariance they
exhibit at LPs; and (ii) the unusually complicated form of the two-point scaling functions
they have in position space already at the level of Landau theory (Diehl and Shpot 2000,
Shpot and Diehl 2001). Anisotropic scale invariance means that coordinate separations dzα
along some directions scale as nontrivial powers of their counterparts drβ along the remaining
orthogonal ones, i.e. dzα ∼ (drβ)θ , where θ , called the anisotropy exponent, differs from 1. Of
course, anisotropic scale invariance is a feature encountered also in studies of dynamical critical
behaviour at usual CPs, where time t scales as a nontrivial power of the spatial separations, and
for which analyses to O(1/n) can be found in the literature (see e.g. Halperin et al (1972); for
more recent uses of the 1/n expansion in dynamics, see e.g. Bray (2002) or Moshe and Zinn-
Justin (2003)). It is the combination with (ii) that makes consistent treatments of fluctuation
effects so hard for critical behaviour at m-axial LPs. The very same difficulties had prevented
the performance of full two-loop RG analyses within the framework of the ε = d∗−d expansion
for decades, and produced controversial O(ε2) results (Mukamel 1977, Sak and Grest 1978,
Hornreich and Bruce 1978, Hornreich 1980, Mergulhão and Carneiro 1999) until such a RG
analysis for general m was finally accomplished in Diehl and Shpot (2000) and Shpot and
Diehl (2001)6.

In order to overcome the above-mentioned technical difficulties, we shall adapt and extend
the elegant technique suggested by Vasiliev et al (1981a) and utilized in subsequent work
(Vasiliev et al 1981b) to compute the 1/n expansion of the standard critical exponents η and
ν for the case m = 0 of a CP to O(1/n2). (In Vasiliev et al (1981c), the authors managed
to compute η even to O(1/n3) by means of a conformal bootstrap method.) We proceed as
follows.

We start in section 2 by specifying the expected scaling forms of the required two-point
functions. These are employed in section 3 to solve the resulting self-consistent equations to
the appropriate order 1/n. Matching the anticipated asymptotic large-distance behaviour of
the cumulants with the solutions of these equations yields consistency conditions. From these,
the O(1/n) terms of the two independent correlation exponents ηL2 and ηL4 can be determined
for general values of m in the form of finite, numerically computable integrals.

In section 4 we verify that these coefficients reduce in the limits m → 0 and m → d to
the analytical expressions for the CP case and the isotropic LP obtained in Ma (1973), Abe
and Hikami (1973) and Hornreich et al (1975b), respectively. In section 5 we consider the
behaviour of our O(1/n) results as ε = 4 + m/2 − d → 0, and explicitly reproduce the large-n
limits of the O(ε2) coefficients of Diehl and Shpot (2000) and Shpot and Diehl (2001) for the
correlation exponents ηL2 and ηL4 in the case m = 2 of a biaxial LP. The consistency of our
results with known expansions about the lower critical dimension d� = 2+m/2 is demonstrated
in section 6.

In section 7 we first consider the special cases (m, d) = (1, 4) and (4, 5). For the former,
we derive fully analytical expressions for the 1/n coefficients of the correlation exponents and

6 For a discussion and critical assessment of recent work (de Albuquerque and Leite (2001), Leite (2003)) giving
alternative results, see Diehl and Shpot (2001, 2003).
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the anisotropy exponent. The latter case requires some numerical work, even though part of
the calculations can also be done analytically. Next, we turn to the physically interesting case
(m, d) = (1, 3) of a uniaxial LP in three dimensions and present numerical results for the
coefficients of the 1/n contributions. In section 8 we compute the universal scaling function
of the energy-density pair correlation function and a related universal amplitude to leading
order in 1/n. We give analytical results for the expansion coefficient of the latter for general
values of (m, d) with d� < d < d∗. Our results are briefly discussed and put in perspective in
the closing section 9. Finally, there are two appendices describing technical details.

2. Scaling properties of the two-point functions

We wish to consider the theory of an n-component vector field φ(x) = (φ1(x), . . . , φn(x))

in d space dimensions. Writing x = (r, z), we decompose the position vector x ∈ R
d into

a ‘parallel’ component z ∈ R
m and a ‘perpendicular’ one r ∈ R

m̄ , where m̄ = d − m is the
codimension of m. Likewise, ∂r ≡ ∂/∂r and ∂z = ∂/∂z denote the corresponding components
of the gradient operator ∇ = (∂r, ∂z). The Hamiltonian of the model we will investigate is
given by

H[φ] = H0[φ] + Hint[φ], (1)

with the O(n)-symmetric free and interacting parts

H0[φ] = 1
2

∫
dd x

[
(∂rφ)

2 + (∂2
zφ)2 + ρ̊ (∂zφ)2 + τ̊ φ2

]
(2)

and

Hint[φ] = λ

8

∫
dd x φ4, (3)

respectively.
In order for the model to have a LP, the dimension d must exceed d�(m, n), the lower critical

dimension, which is believed to be dO(n)
� (m) = 2 + m/2 for the case n > 1 of continuous O(n)

symmetry we are concerned with here (Hornreich et al 1975a, Grest and Sak 1978, Diehl
2002).

A cautionary remark should be added here. The arguments of Hornreich et al (1975a)
and the expansion about the dimension d = 2 + m/2 (Grest and Sak 1978) actually show only
that the homogeneous ordered phase becomes thermodynamically unstable to low-energy
excitations at temperatures T > 0 whenever d � 2 + m/2. To establish that a LP exists for
d > 2 + m/2, one would have to prove additionally the existence of a modulated ordered
phase that is separated via a second-order line from the disordered phase. According to an
argument given by Garel and Pfeuty (1976) one expects the transition from the disordered to
the modulated ordered phase to be described by a 2n-componentφ4 model whose Hamiltonian
has O(n)× O(n) symmetry. Although our results are consistent with the existence of a LP for
n > 1 and d > 2+m/2, we cannot rule out the possibility that for some values of n, fluctuations
might change this transition into a discontinuous one. Such a scenario apparently occurs in
the n = 1 case of ternary mixtures of A and B homopolymers and AB diblock copolymers,
where fluctuations were found to transform the continuous mean-field transition between the
disordered and lamellar phases into a discontinuous one (see e.g. Düchs et al (2003) and its
references), in accordance with general arguments given by Brazovskiı̌ (1975).

Whenever a LP exists, we denote the values of τ̊ and ρ̊ at which it is located by τ̊L and
ρ̊L, respectively.
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To derive the large-n expansion, it is convenient to introduce an auxiliary scalar field
ψ = ψ(x) and rewrite the interaction part Hint[φ] as (Brézin et al 1976, Vasiliev et al 1981a,
Vasiliev 1998, Moshe and Zinn-Justin 2003)

e−Hint [φ] = const
∫

Dψ e− 1
2

∫
dd x [ψ2−i

√
λφ2ψ]. (4)

The full Hamiltonian defined by equations (1)–(3) then becomes

H[φ, ψ] = H0[φ] + 1
2

∫
dd x [ψ2 − i

√
λφ2 ψ], (5)

up to an irrelevant additive constant.
In view of this reformulation of the model it is natural to consider correlation functions

involving besides the fields φa with a = 1, . . . , n also ψ . We need in particular the two-
point functions. Let us consider the disordered phase. Since in it the O(n) symmetry of the
Hamiltonian (5) is not spontaneously broken, the mixed correlation functions 〈φa ψ〉 vanish.
Furthermore, invariance under translations and rotations in the position subspaces R

m and R
m̄

implies 〈
φa1(x + x′) φa2(x

′)
〉 = δa1a2 Gφ(r, z) (6)

and

〈ψ(x + x′) ψ(x′)〉 = Gψ(r, z), (7)

where r ≡ |r| and z ≡ |z| are the lengths of the perpendicular and parallel components of
x = (r, z). Writing the wavevector conjugate to x as k = (p, q), we introduce Fourier
transforms G̃φ,ψ (p, q) of the two-point functions Gφ,ψ (r, z) via

Gφ,ψ (r, z) =
∫ (d)

k

G̃φ,ψ (p, q) eik·x, (8)

where ∫ (d)

k

≡
∫

Rd

ddk

(2π)d
=
∫ (m̄)

p

∫ (m)

q

(9)

is convenient shorthand.
At a LP, the correlation functions Gφ,ψ are expected to decay as powers of r and z in

the long-distance limits r, z → ∞ provided that dO(n)
� < d < d∗. Furthermore, they should

be anisotropically scale invariant. Thus, for appropriate choices of the values of the scaling
dimensions�φ and �ψ of the fields φa and ψ and of the anisotropy exponent θ , the limits

lim
b→∞

b2�φ Gφ(br, bθz) = G(as)
φ (r, z) (10)

and

lim
b→∞

b2�ψ Gψ(br, bθz) = G(as)
ψ (r, z) (11)

should exist, yielding nontrivial asymptotic functions G(as)
φ,ψ (r, z). Similar results must hold

for their Fourier transforms, namely

lim
b→∞ b−2�̃φ,ψ G̃(as)

φ,ψ(b
−1 p, b−θq) = G̃(as)

φ,ψ (p, q), (12)

where the scaling dimensions are given by

2�̃φ,ψ = d − m/2 − 2�φ,ψ . (13)
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The asymptotic functions (12) are generalized homogeneous functions satisfying

G̃(as)
φ,ψ (p, q) = p−2�̃φ,ψ G̃(as)

φ,ψ(1, p−θq) = q−2�̃φ,ψ /θ G̃(as)
φ,ψ

(
q−1/θ p, 1

)
. (14)

The exponents governing the momentum dependences of G̃(as)
φ are conventionally written as

2�̃φ = 2 − ηL2, 2�̃φ/θ = 4 − ηL4, (15)

which defines the correlation exponents ηL2 and ηL4.
In the limit n → ∞, the momentum-space propagators at the LP become

G̃(0)
φ (p, q) = (

p2 + q4
)−1

, G̃(0)
ψ (p, q) = 1, (16)

so that the exponents take their known spherical-model values

η
(0)
L2 = η

(0)
L4 = 0, θ (0) = 1/2. (17)

For finite n, fluctuations modify both the propagators and the critical exponents. Making the
ansätze

ηL2(m, d) = η
(1)
L2

n
+ O(n−2), θ(m, d) = 1

2
+
θ(1)

n
+ O(n−2), (18)

we shall determine the coefficients η(1)L2 and θ(1) of the 1/n corrections in what follows. For
ηL4 the 1/n expansion is analogous to that of ηL2; the scaling relation (15) implies that its
1/n coefficient is given by

η
(1)
L4 = 2

(
η
(1)
L2 + 4θ(1)

)
. (19)

3. Self-consistent equations

The self-consistent equations that must be solved in order to determine the O(1/n) corrections
to the correlation exponents can be derived by well-known steepest descent or diagrammatic
methods, which are amply described in the literature (see e.g. Ma (1973), Abe and Hikami
(1973), Brézin et al (1976), Vasiliev et al (1981a), Vasiliev (1998), Moshe and Zinn-Justin
(2003)). Solving them is, however, another story: owing to the anisotropic character of scale
invariance at LPs, the correlation functions G̃φ and G̃ψ involve scaling functions, rather than
being simple powers. Finding solutions to these equations is therefore a nontrivial task.

We use an appropriately modified variant of the technique advocated by Vasiliev et al
(1981a, 1981b) and employed to compute the critical exponents η and ν of the standard
n-component |φ|4 model up to order n−2. The crux of this method is to make a scaling ansatz
for the asymptotic large-length-scale form of the solutions and determine the exponents it
involves from the conditions implied by the self-consistent equations.

These equations can be written as

G−1
φ = G(0)−1

φ − �φ = G(0)−1
φ – – . . . , (20)

G−1
ψ = G(0)−1

ψ − �ψ = G(0)−1
ψ

– – . . . , (21)

where the full and broken lines denote the full propagators (6) and (7), respectively.
Since the propagator (6) is proportional to δa1a2 , each closed loop of Gφ lines produces

a factor n. We assume that Gφ = O(1) as n → ∞. Then it follows from equation (21) that
G−1
ψ ∼ n as n → ∞. For the self-energy function �ψ an expansion in inverse powers of n

follows, with the leading contribution being of order n. Consequently Gψ = O(1/n), and
since Gφ = O(1), only a finite number of graphs contribute to �φ and �ψ in calculations up
to a given order in 1/n. If we restrict ourselves to the first nontrivial order 1/n, we may drop
all contributions represented by the ellipsis in these two equations.
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According to equations (16), the free parts G̃(0)−1
ψ and G̃(0)−1

φ are analytic in the momenta
p and q . Since the asymptotic forms of the self-consistent solutions involve nontrivial powers
of momenta for generic d , as we shall see, these free parts do not contribute to G̃(as)

φ,ψ (p, q) and
may be discarded. From equation (21) we thus find

G̃(as)
ψ (p, q) = 2

n λ F(p, q)
, (22)

while equation (20) yields

[
G̃(as)
φ (p, q)

]−1 = 2

n

∫ (m̄)

p′

∫ (m)

q′

G̃(as)
φ (|p′ + p|, |q′ + q|)

F(p′, q ′)
(23)

with

F(p, q) =
∫ (m̄)

p′

∫ (m)

q′
G̃(as)
φ (|p′ + p|, |q′ + q|) G̃(as)

φ (p′, q ′). (24)

Just like G̃(as)
φ,ψ(p, q), F(p, q) is a generalized homogeneous function; equation (24) can be

combined with the scaling form (14) of G̃(as)
φ for concluding that

F(p, q) = pm̄+θm−4�̃φ F(1, p−θq) (25)

= q(m̄+θm−4�̃φ)/θ F(q−1/θ p, 1). (26)

We can now insert these expressions together with their analogues (14) for G̃(as)
φ,ψ(p, q)

into equation (23), choosing either one of the components p and q of the external momentum
to be zero. Matching the amplitudes of the corresponding powers p2�̃φ and q2�̃φ/θ on both
sides of the resulting two equations yields the consistency conditions

n

2
=
∫ (m̄)

p

p4�̃φ−m̄

|p + 1|2�̃φ

∫ (m)

q

G̃(as)
φ

(
1, pθ |p + 1|−θ q

)
F(1, q)

≡ I1(n) (27)

and

n

2
=
∫ (m)

q

q4�̃φ/θ−m

|q + 1|2�̃φ/θ

∫ (m̄)

p

G̃(as)
φ

(
q1/θ |q + 1|−1/θ p, 1

)
F(p, 1)

≡ I2(n), (28)

where 1 designates an arbitrary unit vector in m̄ or m dimensions.
Since the left-hand sides are of order n, so must be the right-hand sides. Hence the integrals

I1(n) and I2(n) must have simple poles at 1/n = 0. Consider first I1(n). Its inner integral∫ (m)
q

approaches a p-independent value as p → ∞. Recalling equations (15) and (18), we see

that the ratio of p-dependent factors in front of this integral behaves as ∼p2−m̄+O(1/n) in this
limit. Had we regularized the p integral with a large-p cut-off�, it would have had ultraviolet
(uv) divergences of the form�2−s+O(1/n), s = 0, 1, 2. In the dimensionally regularized theory,
uv divergences ∼�O(1/n) = 1 + O(1/n) ln� + · · · become poles at 1/n = 0. Conversely,
contributions from the inner integral

∫ (m)
q

falling off faster than p−2 as n → ∞ do not contribute

to the residue of the pole ∼(1/n)−1, and hence may be dropped when calculating it.
The upshot is that the O(n) contribution of I1(n) can be determined as follows. We

add and subtract from G̃(as)
φ (1, pθ |p + 1|−θ q) its Taylor expansion in the second variable

u p(q) ≡ pθ |p+1|−θ q about its limiting value for p → ∞, u∞(q) = q , to the order necessary
to ensure that no contributions of order n are produced by the difference. Details of this
calculation are described in appendix A. The result is

I1(n) = n
Km̄

η
(1)
L2 m̄

∫ (m)

q

P1(q4)

(1 + q4)
3 I (1, q)

+ O(n0). (29)
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Here Km̄ is a standard geometric factor defined by

KD ≡ (4π)−D/2 2

�(D/2)
, (30)

while P1 means the polynomial

P1(q
4) = 4 − m̄ (1 + q4). (31)

The integral I (1, q), defined by

I (p, q) =
∫ (m̄)

p′

∫ (m)

q′

1

(p′2 + q ′4)
(|p′ + p|2 + |q′ + q|4) , (32)

is the counterpart of Ma’s (1973) critical ‘elementary bubble’ �(k) for the present case of
m-axial LPs.

The function I (p, q) satisfies scaling relations similar to those of G̃as
φ,ψ(p, q) in

equation (14):

I (p, q) = p−ε I
(
1, qp−1/2) = q−2ε I

(
pq−2, 1

)
. (33)

Further properties of this function are discussed in appendix B.
The O(n) term of I2(n) can be worked out in a similar fashion. To calculate it, we must

add and subtract the Taylor expansion of the corresponding inner integral to fourth order in
one of its variables (see appendix A). Proceeding in this manner yields

I2(n) = n

2

Km(
η
(1)
L2 + 4θ(1)

)
m(m + 2)

∫ (m̄)

p

P2(p2)

(1 + p2)
5 I (p, 1)

+ O(n0) (34)

with the polynomial

P2(p2) = 3(8 − m)(6 − m) + 5(m2 + 2m − 96)p2

+ (m2 + 50m + 144)p4 − m(m + 2)p6. (35)

Using the expressions (29) and (34) for the integrals I1(n) and I2(n), we now solve the
equations (27) and (28) for η(1)L2 and θ(1). This gives

ηL2 = 1

n

2Km̄

m̄

∫ (m)

q

P1(q4)

(1 + q4)3

1

I (1, q)
+ O(n−2), (36)

θ = 1

2
− ηL2

4
+

1

n

Km

4m(m + 2)

∫ (m̄)

p

P2(p2)

(1 + p2)5

1

I (p, 1)
+ O(n−2). (37)

The implied 1/n expansion of ηL4 follows with the aid of relation (19) for the 1/n coefficient
η
(1)
L4 ; it reads

ηL4 = 1

n

2Km

m(m + 2)

∫ (m̄)

p

P2(p2)

(1 + p2)5

1

I (p, 1)
+ O(n−2). (38)

In equations (37) and (38) we have expressed the 1/n coefficients in terms of an integral
over the perpendicular momentum p. Upon exploiting the scaling property (33) of the integral
I (p, q), we could rewrite this as an integral over the parallel momentum q. The transformed
integrand would contain the polynomial P̃2(q4) = q12P2(q−4). Likewise, the q integral in
equation (36) can be recast as an integral over p.

The above equations (36)–(38), giving the expansions of the correlation exponents
ηL2, ηL4 and the anisotropy exponent θ to order 1/n for general values of (m, d) with
2 + m/2 < d < 4 + m/2, are the main results of this paper. In the following we further
analyse these results for special choices of (m, d). Figure 1 illustrates the region between the
upper and lower critical lines in which nonclassical behaviour is expected and displays the
special cases to be discussed below as full circles.
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Figure 1. Lines of upper and lower critical dimensions d∗(m) = 4 + m/2 and d�(m) = 2 + m/2,
respectively. In the shaded region, bounded by portions of these lines together with the condition
0 � m � d, nonclassical critical behaviour is expected to occur. The full circles indicate the
special cases discussed in section 7. Also shown are the lines d = 3 + m and d = m + 1 on which
the free propagator simplifies to a simple exponential and incomplete gamma function, respectively
(see section 7).

4. The limiting cases of critical points and isotropic Lifshitz points

In this section we check that our results for general m, equations (36)–(38), comply with known
series expansions to O(1/n) for the cases m = 0 of CPs (Ma 1973, Abe and Hikami 1973) and
m = d of isotropic LPs (Hornreich et al 1975b). In either case we must take limits D → 0
of D-dimensional integrals to determine the O(1/n) coefficients, where D = m or m̄. To do
this, we use the relation

lim
D→0

∫
dDx g(x; D) = lim

D→0
SD

∫
dx x D−1g(x; D) = g(0; 0). (39)

Consider first the CP case m → 0. Here only the correlation exponent ηL2 is physically
meaningful. From equation (36) one easily derives

lim
m→0

ηL2 = 2

d
Kd lim

m→0

P1(0)

I (1, 0)

1

n
+ O(1/n2)

= 2

d
Kd

4 − d

Jd(1, 1)

1

n
+ O(1/n2), (40)

where Jd(1, 1) is a standard one-loop integral, corresponding to a special case of the quantity
JD( f, t) defined by equation (A.1) of appendix A. Its explicit value is given in equation (A.9).
Inserting it into the last equation we immediately recover the familiar result for η first derived
by Ma (1973) and Abe and Hikami (1973):

η ≡ ηL2|m=0 = 4(4 − d) �(d − 2)

d �(2 − d/2) �2(d/2 − 1) �(d/2)

1

n
+ O(1/n2). (41)

The limit m → d , corresponding to an isotropic LP, can be handled in a similar fashion.
Now only the correlation exponent ηL4 is physically significant. Equation (38) yields

lim
m→d

ηL4 = 2Kd

d(d + 2)
lim

m→d

P2(0)

I (0, 1)

1

n
+ O(1/n2)

= 6
(d − 8)(d − 6)

d(d + 2)

Kd

Jd(2, 2)

1

n
+ O(1/n2) (42)



S1956 M A Shpot et al

with Jd(2, 2) given by equation (A.10). Upon making several transformations of Gamma
functions, we recover the result of Hornreich et al (1975b) for ηL4, namely

ηL4|m=d = 3(8 − d) 2d−2 sin(πd/2) �[(d − 3)/2]

π3/2 d(d + 2) �(d/2)

1

n
+ O(1/n2). (43)

5. Consistency with ε expansion about the upper critical dimension

In Diehl and Shpot (2000) and Shpot and Diehl (2001) the ε expansions about the upper critical
dimension d∗ = 4+m/2 of all critical, crossover and the usual correction-to-scaling exponents
have been obtained for general m and n. These series can be expanded in powers of 1/n to
O(1/n). Conversely, considering the limit of small ε, our above O(1/n) results for general
(m, d) can be expanded in powers of ε. The resulting two double-series expansions in ε and
1/n of each exponent should agree.

We shall work out the O(ε2/n) contributions implied by the 1/n expansions (36) and (38)
for general m, expressing them in terms of multi-dimensional integrals. Unfortunately, these
integrals are in general rather complicated and not necessarily analytically tractable. For this
reason, we will content ourselves here with verifying the consistency of the series expansions
of ηL2 and ηL4 in ε and 1/n for the special choice m = 2. Owing to the simple form which the
scaling functions of the position-space propagators take in this case both for n = ∞ and the
Gaussian theory (simple exponentials, see Mergulhão and Carneiro (1999), Diehl and Shpot
(2000), Shpot and Diehl (2001)), the O(ε2/n) terms of the series expansions can be worked
out analytically in a straightforward fashion (see below).

One source of ε dependence in equations (36) and (38) is the function I (p, q). This is
just the one-loop Feynman integral associated with the four-point graph of the usual φ4

theory for m-axial LPs. Its Laurent expansion in ε reads

I (p, q) = p−ε

ε
c−1

[
1 − ε F(q2/p)

]
+ O(ε), (44)

where c−1 and minus the scaling function F represent the residuum and finite part of I (1, q),
respectively.

In the case of ηL2, a second source of ε dependence is the function P1(q4) (see
equation (31)). Upon decomposing it as

P1(q
4) = P (0)

1 (q4) + ε P (1)
1 (q4) (45)

with

P (0)
1 (q4) = m

2
(1 + q4)− 4q4 (46)

and

P (1)
1 (q4) = 1 + q4, (47)

we arrive at the ε expansion

ηL2 = 1

n

2Km̄

m̄

ε

c−1

∫ (m)

q

P (0)
1 (q4) + ε P (1)

1 (q4)

(1 + q4)3

[
1 + ε F(q2)

]
+ O

(
ε3

n
,
ε2

n2

)
. (48)

The result suggests the presence of a term linear in ε. However, the ε expansions of the
correlation exponents ηL2 and ηL4 are known to start at order ε2, so this term must vanish. It
does indeed, since∫ ∞

0
dq qm−1 P (0)

1 (q4)

(1 + q4)3
= 0. (49)
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Hence we have

ηL2 = ε2

n

4K4−m/2

(8 − m) c−1

∫ (m)

q

P (0)
1 (q4) F(q2) + P (1)

1 (q4)

(1 + q4)3
+ O

(
ε3

n
,
ε2

n2

)
. (50)

Turning to the expansion (38) of ηL4, we note that the polynomial P2(p2) in its integrand
does not depend on ε. However, the integration measure contains a factor p−ε which cancels
the one originating from I (p, 1) (see equation (44)). It follows that

ηL4 = 1

n

2Km

m(m + 2)

ε

c−1

∫ (m̄∗)

p

P2(p2)

(1 + p2)5
[1 + ε F(1/p)] + O

(
ε3

n
,
ε2

n2

)
. (51)

Similarly to above, the contribution from the 1 in the square brackets vanishes because∫ ∞

0
d p p3−m/2 P2(p2)

(1 + p2)
5

= 0 (52)

for general m. Thus the contribution linear in ε is zero, and the ε expansion of the large-n
result (38) becomes

ηL4 = ε2

n

2Km

m(m + 2) c−1

∫ (m̄∗)

p

P2(p2) F(1/p)

(1 + p2)5
+ O

(
ε3

n
,
ε2

n2

)
. (53)

Equations (50) and (53) give the contributions of O(ε2/n) implied by our large-n results
for general m. They should agree with those obtained from the ε-expansion results of Diehl
and Shpot (2000) and Shpot and Diehl (2001). Let us verify this explicitly for the biaxial
case m = 2, for which both the residue c−1 and the function F appearing in the Laurent
expansion (44) may be gleaned from Mergulhão and Carneiro (1999). Taking into account
that the expansion parameter ε‖, called ε by these authors, corresponds to ε‖ = 2ε in our
notation7, one sees that

c−1|m=2 = 1

32π2
, (54)

F(q2)|m=2 = q2

2
arctan(2/q2) +

1

2
ln(1 + q4/4)− 1 − ln 4. (55)

Upon substituting this into equations (50) and (53), one can perform the required
integrations to obtain

ηL2(m = 2) = 4

9

ε2

n
+ O

(
ε3

n
,
ε2

n2

)
, (56)

ηL4(m = 2) = − 8

27

ε2

n
+ O

(
ε3

n
,
ε2

n2

)
. (57)

Expanding the correct O(ε2) results (Sak and Grest 1978, Mergulhão and Carneiro 1999, Shpot
and Diehl 2001) to order 1/n yields identical results.

Since the Laurent expansion of the integral I (p, q) to order ε0 is also explicitly known
when m = 6 (where d∗ = 7) (Mergulhão and Carneiro 1999), a similar consistency
check should also be possible in this case via analytical, albeit somewhat more complicated,
calculations.

A complete proof of agreement of the results of the 1/n and ε expansions for general m
lies beyond the scope of the present work. The main reason that we have so far been unable
to generalize the foregoing consistency check to general values of m is our lack of knowledge
of a sufficiently simple closed form for the finite part of I (p, q).

7 Note that there is a misprint in the corresponding formula of Shpot and Diehl (2001) which precedes its equation
(69). The correct relation between ε‖ and ε = d∗(m)− d is as given above in the main text.
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6. Consistency with expansions about the lower critical dimension

The 1/n expansions (36) and (38) should hold down to the lower critical dimensionality
d�, which is given by the line d�(m) = 2 + m/2 in our case (unless the LP gets destroyed
by fluctuations). Considering dimensions d = d� + ε� slightly above d�, we can additionally
expand in ε�. Conversely, any pertinent series expansion in ε� that is available can be expanded
in powers of 1/n. The resulting pairs of double power series in 1/n and ε must agree.

Series expansions about the lower critical dimension can be obtained for systems of the
kind we are concerned with here—namely, systems having a low-temperature phase with
spontaneously broken O(n) symmetry—by analysing appropriate nonlinear sigma models
(Polyakov 1975, Brézin and Zinn-Justin 1976a, 1976b, Bardeen et al 1976). There are two
sorts of results we can compare with: ε� expansions for the CP case m = 0 (Brézin and
Zinn-Justin 1976b), on the one hand, and ones for m-axial LPs (Grest and Sak 1978), on the
other hand. By investigating an appropriate generalization of the conventional nonlinear sigma
model, the latter authors produced one-loop results for the three special values m = 1, 2 and 4.

To show that our O(1/n) results (36)–(38) are compatible with these ε� expansions, we
proceed in much the same way as in section 5. The integrals I (p, 1) and I (1, q) in the
denominators of these equations have poles at ε� = 0. According to equations (B.8) and (B.23),

I (p, 1) = I (1, q) + O(ε0
� ) = (4π)−1−m/4 �(m/4)

�(m/2)

2

ε�
+ O(ε0

� ). (58)

Substituting this into equations (36)–(38), one can perform the remaining integrations. Unlike
in the case of small ε, nonzero contributions linear in ε� appear. We obtain

ηL2 = ηL4

2
+ O

(
ε2
�

n
,
ε�

n2

)
= ε�

n
+ O

(
ε2
�

n
,
ε�

n2

)
(59)

and

θ = 1

2
+ O

(
ε2
�

n
,
ε�

n2

)
. (60)

These results are consistent both with Grest and Sak (1978) as well as with Brézin and
Zinn-Justin (1976b). Since they were derived for general m, the above critical exponents are
independent of m to the indicated order in 1/n and ε. Note that the O(ε�/n) correction to the
anisotropy exponent vanishes.

From the structure of the ε� expansions it is clear that the O(ε�) terms of ηL2 and ηL4 must
be inversely proportional to n − 2. Hence we can generalize Grest and Sak’s (1978) results
for m = 1, 2 and 4 to conclude that

ηL2(m) = 1

2
ηL4(m) + O(ε2

� ) = ε�

n − 2
+ O(ε2

� ), (61)

θ(m) = 1
2 + O(ε2

� ), (62)

for general m.
As one sees, the series coefficients of the terms linear in ε� are independent of m. This

is a feature they have in common with the coefficients of the O(ε) contributions of all bulk
critical exponents of the m-axial LPs we are concerned with here (Shpot and Diehl 2001).
For the ε expansion of the above exponents this is trivially fulfilled since their O(ε) terms are
zero. However, other exponents such as those associated with the parallel and perpendicular
correlation lengths do have O(ε) contributions, whose coefficients do not depend on m.
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7. Special cases

In this section we further exploit our results for general m, equations (36)–(38), by considering
special cases. Of primary physical interest clearly is the case (m, d) = (1, 3) of a three-
dimensional system with uniaxial anisotropy. Unfortunately, this case appears too difficult to
allow a completely analytic calculation of the O(1/n) terms. Let us therefore first consider
some simpler cases, before returning to it.

7.1. The case m = 1, d = 4

For this choice of (m, d), the required calculations can be done analytically to obtain closed
expressions for the O(1/n) coefficients of the exponents ηL2, ηL4 and θ .

To see this, recall that the free propagator in position space takes a simple exponential
form on the whole line d = 3 + m (Mergulhão and Carneiro 1999, Shpot and Diehl 2001). On
it, the scaling function�m,d(υ) of the Fourier back transform

G(0)
φ (r, z) = r−2+ε �m,d(v), υ ≡ z/

√
r , (63)

of the free momentum-space propagator G̃(0)
φ (p, q) introduced in equation (16) simplifies to

�m,3+m(υ) = (4π)−2+εe−υ2/4, (64)

whilst away from it, it is generally a difference of two generalized hypergeometric functions,
a so-called Fox–Wright 1�1 function (Shpot and Diehl 2001).

Previously, this simplifying feature was exploited in the context of the ε expansion in two
different ways: Mergulhão and Carneiro (1999) fixed the codimension m̄ = d − m at m̄ = 3
and took m = 2 − 2ε (and hence d = 5 − 2ε) to expand about the point (m, d) = (2, 5).
Shpot and Diehl (2001) performed a two-loop RG analysis for general fixed m and dimensions
d = d∗(m)− ε. Owing to the simple form (64), both kinds of calculations could be performed
analytically for m = 2, as well as for m = 6 where one can benefit from similar simplifications
at d∗(6) = 7. Despite the difference of the two procedures, they yielded consistent results for
the ε expansions of the critical exponents about (m, d) = (2, 5) to O(ε2).8

Since the ε expansion is asymptotic, it gives us direct information only about the behaviour
in the immediate vicinity of the line of upper critical dimensions d∗(m). In order to derive
from it reliable predictions for the values of critical exponents in d = 3 dimensions, one must
extrapolate, for example, in the case m = 1 of a uniaxial LP down to ε = 3/2. This is not
normally possible unless sophisticated extrapolation and resummation methods are employed.
The 1/n expansion, on the other hand, does not require ε to be small and hence enables us to
move further away from d∗. Here we exploit the simple form (64) to gain information about
the behaviour at (m, d) = (1, 4), corresponding to a distance of ε = 1/2 from d∗(1) = 9/2.

It is no complicated matter to compute the function I (1, q) for m = 1 and d = 4; one
obtains

I (1, q)|d=4
m=1 = 1

8π
√

2

√√
q4 + 4 − q2 = 1

4π
√

2

1√√
q4 + 4 + q2

, (65)

which yields I (p, 1) = p−1/2 I (1, p−1/2) by virtue of the scaling property (33). Upon
inserting these expressions into equations (36)–(38), one can perform the required integrations

8 Verifying the consistency of Mergulhão and Carneiro’s (1999) series expansions to O(ε2) about (m, d) = (2, 5)
and (6, 7) with those of Shpot and Diehl (2001) requires the correction of two minor mistakes in the former reference;
see section 4.2 of Shpot and Diehl (2001) for details.
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in a straightforward manner. This gives the following results for the 1/n coefficients of the
exponents ηL2, θ and ηL4:

η
(1)
L2 = 5

9π
√

3

 0.1021,

θ (1) = − 4
27π

√
3


 −0.0272,

η
(1)
L4 = − 2

27π
√

3

 −0.0136,




m = 1, d = 4. (66)

Despite the smallness of the O(1/n) corrections, these results provide clear evidence for the
fact that the critical exponents ηL2, ηL4 and θ have nonclassical values below the upper critical
dimension. This conclusion is in full accord with previous work based on the ε expansion
(Diehl and Shpot 2000, Shpot and Diehl 2001).

7.2. The special case m = 4, d = 5

There is another line on which the scaling function�m,d simplifies: for d = m + 1 it reduces
to an incomplete gamma function (see equation (18) of Shpot and Diehl (2001)). Specifically
for d = m + 1 = 5, it becomes the elementary function

�4,5(υ) = 1

2(2π)2
1

υ2
(1 − e−υ2/4). (67)

Its simplicity enables us to compute the integral I (1, q) for this choice of m and d without
much difficulty. We obtain

I (1, q)|d=5
m=4 = 1

2(2π)2
1

4q2

{
q2 arctan

[
2

q2(q4 + 3)

]
+ ln

1 + q4

1 + q4/4

}
(68)

and a corresponding result for I (p, 1)= p−1 I (1, p−1/2). These expressions can be substituted
into equations (36)–(38) and the required integrals then evaluated by numerical means. This
yields the values

η
(1)
L2 
 0.314,

θ (1) 
 −0.0728,

η
(1)
L4 
 0.045,




m = 4, d = 5, (69)

for the 1/n coefficients of ηL2, θ and ηL4. Remarkably, the 1/n coefficient of ηL4 is no longer
negative, as it was both for infinitesimally small ε and at (m, d) = (1, 4).

7.3. The case m = 1, d = 3

We now turn to the uniaxial, three-dimensional case (m, d) = (1, 3). Unfortunately, we have
not been able to evaluate fully analytically the required integrals of the 1/n coefficients.

Let us start from equation (32). The (m̄ = 2)-dimensional integration over the
perpendicular momentum p′ can be performed in a straightforward fashion, giving

I (1, q) = 1

8π2

∫ ∞

−∞
dq ′ A−1/2 ln

[
2q ′4(q ′ + q)4 + A +

[
q ′4 + (q ′ + q)4 + 1

]
A1/2

2q ′4(q ′ + q)4

]
, (70)

where A stands for the expression

A(q ′, q) = [
1 + (q ′ + q)4

]2
+ (1 + q ′4)2 − 2q ′4(q ′ + q)4 − 1. (71)

The integration over q ′ can be regarded as an integration in the complex q ′ plane and after
some work be shown to reduce to9

I (1, q) = − i

2π

∫ i
2q

0

dq ′√
(1 + 4q ′2q2)

[
1 + 1

4 (4q ′2 + q2)2
] . (72)

9 We are indebted to S Rutkevich for this calculation.
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This in turn can be expressed as a complete elliptic integral or Gauss hypergeometric function
to obtain

I (1, q) = 1
4 (4 + q4)

−1/4
(1 + q4)

−1/2
2 F1

(
1
2 ,

1
2 ; 1; k2) (73)

with

k2 = 1

2

[
1 − 3 + q4

(1 + q4)(1 + 4/q4)
1/2

]
. (74)

Known quadratic and linear transformation formulae for the hypergeometric function 2 F1,
such as equations (15.30.30) and (15.3.4) of Abramowitz and Stegun (1972), enable us to cast
the above integral in the following two equivalent forms:

I (1, q) = 1

4
√

2
u1/4

2 F1
(

1
4 ,

1
4 ; 1; u

)
, u = 4

(1 + q4)2(4 + q4)
, (75)

= 1

4
√

2
w1/4

2 F1
(

1
4 ,

3
4 ; 1; −w), w = 4

q4(3 + q4)2
. (76)

Upon substitution of either one of them into our general expressions (36)–(38) for the
O(1/n) coefficients (along with their counterparts for I (p, 1) = p−3/2 I (1, p−1/2)), the
remaining integration over q can easily be performed numerically. The results are

ηL2(m = 1, d = 3) 
 0.306
1

n
+ O(n−2), (77)

θ(m = 1, d = 3) 
 1

2
− 0.0487

1

n
+ O(n−2), (78)

ηL4(m = 1, d = 3) 
 0.223
1

n
+ O(n−2). (79)

Just as in the previous case of m = 4, d = 5, and unlike the coefficient of the O(ε2/n)
term, η(1)L4 is positive. This suggests a tendency of ηL4 to change from small negative values
for d � d∗ to positive ones as d is lowered further.

8. A universal scaling function and related amplitude

So far we have focused our attention on the calculation of critical exponents. However, the
1/n expansion can also be employed to compute other universal quantities such as universal
amplitude ratios and scaling functions. As an example, we here compute the leading nontrivial
term of a universal scaling function associated with the energy-density cumulant at the LP and
a related amplitude.

According to general scaling arguments and RG work (Diehl and Shpot 2000, Shpot and
Diehl 2001, Diehl et al 2003a, 2003b), the leading singular part of this function is expected to
take on large length scales the asymptotic scaling form

G̃(sing)
φ2 (p, q) ≡ 〈φ2φ2〉cum

p,q |sing ≈ E1 p−αL/νL2 �m,d(E2 qp−θ ). (80)

Here the quantity on the left-hand side is the Fourier transform of the cumulant
〈φ2(x)φ2(0)〉cum, where ‘sing’ means singular part. Further, αL and νL2 are the usual critical
indices of the specific heat and perpendicular correlation length; they are related to the
exponents used above via

αL/νL2 = 2/νL2 − m̄ − mθ = 2�̃ψ . (81)

Furthermore, E1 and E2 denote nonuniversal metric factors. The former can be varied by
changing the normalization of the order parameter field φ, the latter by modifying the scale in
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Figure 2. Universal amplitude C(m, d) as a function of d for m = 1 (full line) and m = 2 (broken
line).

which parallel momenta are measured, i.e. by multiplying the term (∂2
z φ)2 of the Hamiltonian

by a factor σ �= 1.
The scaling function �m,d should be universal, but depends of course on n. We choose

its normalization such that �m,d(0) = 1. To fix the scale of its argument, we could require
that the logarithmic derivative of �m,d(q) at a reference value q0 (for instance, q0 = 0) takes
a certain value. We do this simply by making the choice E2 = 1. The 1/n expansion of �m,d

then starts at order (1/n)0. Taking into account that the function G̃φ2(p, q) is trivially related
to G̃ψ(p, q) (see e.g. chapter 29 of Zinn-Justin (1996)) and recalling equation (21), one sees
that

�m,d(q) = I (1, q)

I (1, 0)
+ O(1/n). (82)

If we take the limit p → 0 at fixed q , the scaling form (80) must yield a p-independent
contribution ∼q−αL/νL2θ . Hence the scaling function must have the asymptotic behaviour

�m,d(q → ∞) ≈ C(m, d) q−αL/(νL2θ). (83)

From equation (82) we conclude that the universal coefficient C(m, d), to leading order
in 1/n, is given by

C(m, d) = C(0)(m, d) + O(1/n) with C(0)(m, d) = I (0, 1)

I (1, 0)
. (84)

In appendix B we show that the required two integrals can both be calculated explicitly for
general values of m and d . The results can be found in equations (B.8) and (B.23). We refrain
from giving the resulting rather lengthy expression for C(m, d) here, restricting ourselves to a
discussion of some special cases of interest.

Consider, first, the uniaxial case m = 1. Here our result becomes

C(0)(1, d) = 2−d+3/2 √
π � [(2d − 3)/4] sin [(2 d − 5) π/4)]

[
2d + 16 sin(d π/2)

]
cos(d π)�(1/4) �[(d − 1)/2]

. (85)

As shown in figure 2, this coefficient is a smooth and finite function of d over the whole range
d� = 5/2 � d � d∗ = 9/2. It has the ε expansion

C(0)(1, 9/2 − ε) = 1 + (π − 4 − 2 ln 2)
ε

12
+ O(ε2). (86)

The corresponding results for the biaxial case m = 2 are

C(0)(2, d) = π−3/2 cot(dπ/2)

[
�[(5 − d)/2]�[(d − 4)/2] − 45−dπ

�(d − 4)

�(d − 7/2)

]
(87)
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and

C(0)(2, 5 − ε) = 1 + (ln 2 − 1) ε + O(ε2). (88)

Again, this coefficient behaves smoothly between the upper and lower critical dimensions
d� = 3 and d∗ = 5 (see figure 2).

9. Summary and discussion

In this paper we have shown how to utilize the 1/n expansion for the study of critical behaviour
at m-axial LPs. We have been able to determine the O(1/n) corrections of the correlation
exponents ηL2 and ηL4, and of the related anisotropy exponent θ , for general values of m and
d with 0 � m � d and 2 + m/2 < d � 4 + m/2. What makes such calculations a challenge
is a combination of two problems: the anisotropic scale invariance one encounters already at
the level of the free theory, and the complicated forms of the propagators’ scaling functions at
the LP.

To cope with these difficulties, it proved useful to employ a properly adjusted and
generalized modification of the technique Vasiliev et al (1981a, 1981b) introduced to compute
the critical exponents η and ν of the standard n-component |φ|4 model up to order n−2. We
believe that the present work may serve as a starting point for more ambitious studies based on
the 1/n expansion. One question which might be systematically investigated in this manner
is whether the predictions for scaling functions of anisotropic scale invariant systems made
recently by Henkel (1997, 2002) have any significance in cases where fluctuation effects must
not be ignored.

Apart from yielding insights into the feasibility of the approach to such an anisotropic
scale invariant system, our work permits us to draw two interesting conclusions. First of all,
it provides unequivocal evidence of the fact that the critical exponents ηL2, ηL4 and θ differ
for d < d∗ from their classical values. Although this is in complete accord with what the
available dimensionality expansions about the upper and lower critical dimensions tell us (see
sections 5 and 6), it goes considerably beyond these results because no extrapolation in d is
involved in the 1/n expansion. This means in particular that the anisotropy exponent θ of the
three-dimensional uniaxial LPs should be nonclassical.

Another remarkable aspect of our results is the interesting variation of the O(1/n)
coefficient of the exponent ηL4 with d . As illustrated in figure 3 for the uniaxial case m = 1,
it first decreases to small negative values as d drops below d∗, then becomes positive as d is
lowered further, before it drops back to zero at the lower critical dimension d�. If we accept the
plausible hypothesis that the correlation exponents are continuous functions of d , then it seems
reasonable to expect a qualitatively similar behaviour of the exponent ηL4. In other words, ηL4

should change sign somewhere below d∗. In fact, there are other examples where the lowest
nontrivial term of the dimensionality expansion about d∗ is negative, whereas extrapolations of
higher-order calculations yield a positive value in d = 3 dimensions. This happens for instance
in the case of the Ising model with quenched random bond disorder. Here the dimensionality
expansion of the correlation exponent η about d = 4 begins with a negative contribution
∼(√4 − d)2 (see e.g. Jayaprakash and Katz 1977), whereas the extrapolation of higher-order
calculations yields a positive value for this exponent at d = 3 (Pelissetto and Vicari 2000).

Let us close with a few cautionary remarks. Our results to O(1/n) are mathematically
well defined over the whole regime where 2 +m/2 < d � 4 +m/2 and 0 � m � d (the shaded
region in figure 1). However, applying them to real three-dimensional systems requires some
care. They should be combined with information from other sources such as dimensionality
expansions, simulations, exact results and experiments, keeping in mind their limitations.
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expansion

expansion

expan-
sion

Figure 3. Behaviour of the 1/n coefficients η(1)L2 (1, d) (open circles) and η(1)L4 (1, d) (crosses) as
functions of d. The four points displayed for each one of them correspond to results described
in section 7. The thick lines near the upper and lower critical dimensions represent the limiting
forms ∼ε2 and ∼ε�, which the dimensionality expansions mentioned in sections 5 and 6 yield. The
widely or densely dotted lines serve to guide the eyes. The exponent η(1)L4 (1, d) has a small negative
value beneath the upper critical dimension d∗(1) = 9/2 and appears to change sign somewhat
below d = 4.

For example, depending on whether m = 2 or m > 2, the lower critical dimension d� is d� = 3
or d� > 3, respectively, whenever n � 2. Hence, unless the O(n) symmetry is explicitly
broken, no m-axial LPs are expected to occur at nonzero temperatures for d = 3, which leaves
us with the case of uniaxial LPs in three dimensions. On the other hand, contributions to the
Hamiltonian that break the O(n) symmetry are generically expected, for example, for magnetic
crystals. An analysis of such spin anisotropies can be found in Hornreich (1979).

For m � 2, one must also worry about anisotropies of another type: space anisotropies
breaking the isotropy in the m-dimensional subspace. These give rise to corresponding
anisotropic terms quadratic in ∂2φ/∂zα∂zα′ , which we also have not taken into account here.
Their effects have been investigated recently within the framework of the ε expansion (Diehl
et al 2003b).

Last, but not least, let us mention that the technique of matching asymptotic scaling forms,
on which our above analysis was based, can be extended to determine the O(1/n) corrections
of the thermal exponents νL2, νL4, γL and αL for m-axial LPs (Shpot et al 2005).
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Appendix A. Large-n behaviour of momentum integrals

In subsequent calculations we shall need the properties of the following D-dimensional
momentum integral:

JD( f, t) =
∫ (D)

k

k−2 f |k + 1|−2t = V( f, t; D − f − t), (A.1)

where the function V is defined by

V(c1, c2; c3) = (4π)−D/2a(c1)a(c2)a(c3), a(ci) ≡ � (D/2 − ci)

�(ci )
, i = 1, 2, 3.

(A.2)

Let us consider the parameters f and t of the integral (A.1) as regular functions of some
small parameter κ . Choosing l � 0 to be integer, we set

f + t = D

2
− l + κ. (A.3)

Then the integral JD( f, t) is singular in the region of large k for small values of κ . Its singular
part is given by

Vsing( f, t; D/2 + l − κ) = KD
(−1)l

l!

( f )l (t)l |κ=0

(D/2)l

1

2κ
, (A.4)

where KD was defined in equation (30), and (· · ·)l are Pochhammer symbols:

(w)l ≡ �(w + l)

�(w)
= w(w + 1) · · · (w + l − 1), (w)0 = 1. (A.5)

Specifically for l = 0, l = 1, l = 2 and κ → 0, we have

Vsing ( f, t; D/2 − κ) = KD

2κ
, (A.6)

Vsing ( f, t; D/2 + 1 − κ) = − KD

Dκ
f t|κ=0, (A.7)

Vsing ( f, t; D/2 + 2 − κ) = KD

D(D + 2)κ
f ( f + 1) t (t + 1)|κ=0. (A.8)

Two relevant examples of the integral JD( f, t) are

Jd(1, 1) =
∫ (d)

p

1

p2 (p + 1)2
= (4π)−d/2 � (2 − d/2)

�(d − 2)
�2(d/2 − 1) (A.9)

and

Jd(2, 2) =
∫ (d)

q

1

q4 (q + 1)4
= (4π)−d/2 � (4 − d/2)

�(d − 4)
�2

(
d

2
− 2

)
. (A.10)

Now let us consider the momentum integrals I1(n) and I2(n) of equations (27) and (28).
We have to isolate their pole contributions at n = ∞. For further convenience we write them
as

I1(n) =
∫ (m̄)

p

p4�̃φ−m̄

|p + 1|2�̃φ

∫ (m)

q

G1

(
p2θ

|p + 1|2θ q2

)
1

F(1, q)
, (A.11)

I2(n) =
∫ (m)

q

q4�̃φ/θ−m

|q + 1|2�̃φ/θ

∫ (m̄)

p

G2

(
q2/θ

|q + 1|2/θ p2

)
1

F(p, 1)
, (A.12)

where G1(Q2) and G2(P2) denote the scaling functions G̃(as)
φ (1, Q) and G̃(as)

φ (P, 1).



S1966 M A Shpot et al

Adding and subtracting the asymptotic forms of the arguments of G1 and G2 for p → ∞
and q → ∞ we write these functions as

G1
(
q2 p2θ |p + 1|−2θ

) ≡ G1(q
2 + q2αp) =

2∑
s=0

1

s!

ds G1(q2)

d(q2)s
q2sαs

p + R1(p, q), (A.13)

G2
(

p2 q2/θ |q + 1|−2/θ
) ≡ G2(p2 + p2βq) =

4∑
s=0

1

s!

ds G2(p2)

d(p2)s
p2sβs

q + R2(p, q). (A.14)

The deviations

αp ≡ p2θ |p + 1|−2θ − 1 and βq ≡ q2/θ |q + 1|−2/θ − 1 (A.15)

are of order p−1 and q−1 for large p and q . Including their successive powers enhances the
ultraviolet convergenceof p and q integrations in equations (A.11) and (A.12). The remainders
R1(p, q) and R2(p, q) of the Taylor expansions contain sufficiently high powers of αp and βq

to make the integrations finite as n → ∞. These convergent contributions would be required
for a calculation to O(n−2). All we need now is

I1(n) =
2∑

s=0

J αs
s!

lim
n→∞

∫ (m)

q

q2s ds G1(q2)

d(q2)s

1

F(1, q)
+ O(n0), (A.16)

I2(n) =
4∑

s=0

J βs
s!

lim
n→∞

∫ (m̄)

p

p2s ds G2(p2)

d(p2)s

1

F(p, 1)
+ O(n0). (A.17)

The coefficients J αs and J βs are given by the integrals

J αs =
∫ (m̄)

p

p4�̃φ−m̄ |p + 1|−2�̃φ αs
p, s = 0, 1, 2, (A.18)

J βs =
∫ (m)

q

q
4�̃φ
θ

−m |q + 1|− 2�̃φ
θ βs

q, s = 0, . . . , 4, (A.19)

which have simple poles in 1/n at n = ∞. This fact allows us to take the limit n → ∞ in the
remaining integrals over q and p in equations (A.16) and (A.17).

Making binomial expansions of the integer powers αs
p and βs

q in equations (A.18)

and (A.19), we can express J αs and J βs in terms of the integral (A.1):

J αs =
s∑

j=0

(−1)s− j C j
s V
(

m̄

2
− 2�̃φ − jθ, �̃φ + jθ; m̄

2
+ 1 − η

(1)
L2

2n

)
, (A.20)

J βs =
s∑

j=0

(−1)s− j C j
s V
[

1

θ

(
mθ

2
− 2�̃φ − j

)
,
�̃φ + j

θ
; m

2
+ 2 − η

(1)
L2 + 4θ(1)

n

]
, (A.21)

where C j
s are the corresponding binomial coefficients.

Comparing the arguments of the function V in equations (A.20) and (A.21) with their
counterparts in equation (A.4), we read off l = 1 and κ = η

(1)
L2 /(2n) for J αs , and l = 2 with

κ = (η
(1)
L2 + 4θ(1))/n for J βs . With the aid of the results (A.7) and (A.8) we then obtain the

required leading large-n behaviour of J αs and J βs :

J αs = Km̄

m̄

2n

η
(1)
L2

As + O(n0), (A.22)

J βs = Km

m(m + 2)

n

η
(1)
L2 + 4θ(1)

Bs + O(n0). (A.23)
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Here As (with s = 0, 1, 2) and Bs (with s = 0, . . . , 4) denote the sums

As =
s∑

j=0

(−1)s− j+1 C j
s

(
m̄

2
− 2 − j

2

)(
1 +

j

2

)
, (A.24)

Bs =
s∑

j=0

(−1)s− j C j
s

(
m

2
− 4 − 2 j

)(
m

2
− 3 − 2 j

)
(2 + 2 j)(3 + 2 j). (A.25)

A simple calculation gives

A0 = 1
2 (4 − d + m), A1 = 1

4 (7 − d + m), A2 = 1
2 ;

B0 = 3
2 (8 − m)(6 − m), B1 = 1

2 (16 − m)(66 − 7m),

B2 = 2(612 − 58m + m2), B3 = 48(24 − m), B4 = 384.

(A.26)

In conjunction with the relations (A.22) and (A.23), these results give us the coefficients J αs
and J βs in equations (A.16) and (A.17).

The limit n → ∞ in these equations reduces the scaling functions in the integrands to
those of the free theory. That is, we may use the large-n result

lim
n→∞ F(p, q) = I (p, q) =

∫ (d)

k′

1

(p′2 + q ′4)
(|p′ + p|2 + |q′ + q|4) (A.27)

for both scaling functions F(1, q) and F(p, 1) introduced in equation (24).
Similarly, the scaling functions G1(q2) and G2(p2) in equations (A.16) and (A.17) reduce

to

G̃(0)
1 (q2) = 1

1 + q4
and G̃(0)

2 (p2) = 1

p2 + 1
(A.28)

in this limit.
We can now evaluate the sums in equations (A.16) and (A.17). Apart from overall factors,

we have

2∑
s=0

As

s!
q2s ds G(0)

1 (q2)

d(q2)s
= P1(q4)

2(1 + q4)3
, (A.29)

4∑
s=0

Bs

s!
p2s dsG(0)

2 (p2)

d(p2)s
= P2(p2)

2(1 + p2)5
, (A.30)

where the polynomialsP1(q4) and P2(p2) are given explicitly in equations (31) and (35) of the
main text. Finally, equations (A.16) and (A.17), along with (A.22), (A.23) and (A.29), (A.30),
yield the leading-order expressions of I1(n) and I2(n) given in equations (29) and (34).

Appendix B. The one-loop integral

The one-loop Feynman integral I (p, q) is an important ingredient of our calculations.
Unfortunately, we did not succeed in evaluating it for generic dimensions and external
momenta. Various simplified expressions which result for special values of m and d are
presented in the main text. Below, we consider the simplifying cases of zero external momenta
where closed analytic expressions are obtained for arbitrary m and d .
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B.1. The integral I (p, 0)

Consider the integral

I (p, 0) =
∫ (m̄)

p′

∫ (m)

q′
1

p′2 + q ′4
1

(p′ + p)2 + q ′4 . (B.1)

It is convenient to convert this integral to the coordinate representation where it is given by a
Fourier transform of the squared free propagator:

I (p, 0) =
∫

dm̄r
∫

dmz
[
G(0)
φ (r, z)

]2
e−ipr. (B.2)

Using the scaling representation (63) for G(0)
φ (r, z) and changing the integration variable z via

z = v
√

r we obtain

I (p, 0) =
∫

dm̄r r−4+m/2+2ε e−ipr

∫
dmυ �2(υ). (B.3)

The r integration is standard, giving∫
dm̄rr−4+m/2+2εe−ipr = 2ε π m̄/2 �(ε/2)

�(2 − m/4 − ε)
p−ε . (B.4)

To calculate the integral over υ, we use the Fourier representation (Diehl and Shpot 2000,
Shpot and Diehl 2001)

�(υ) = (2π)−m̄/2
∫ (m)

q

qm̄−2 Km̄/2−1(q
2) eiqυ. (B.5)

This leads us to∫
dmυ �2(υ) = (2π)−m̄

∫ (m)

q

q2m̄−4 K 2
m̄/2−1(q

2). (B.6)

The last integral is known for arbitrary m and d . We obtain∫
dmυ�2(υ) = (2π)−d πm/2 1

2
2−ε �2(1 − ε/2)

�(2 − m/4 − ε)

�(2 − ε)

�(m/4)

�(m/2)
. (B.7)

Multiplying the two contributions yields

I (p, 0) = (4π)−d/2 1

2
�(ε/2)

�2(1 − ε/2)

�(2 − ε)

�(m/4)

�(m/2)
p−ε . (B.8)

B.2. The integral I (0, q)

Let us consider another special case of the one-loop integral I (p, q),

I (0, 1) =
∫ (m̄)

p

∫ (m)

q

1

p2 + q4

1

p2 + (q + 1)4
. (B.9)

Its treatment is somewhat more involved. We shall use some tricks employed by Mergulhão
and Carneiro (1999) in a similar calculation. Making a partial fraction expansion

1

(a + b)(a + c)
= 1

c − b

(
1

a + b
− 1

a + c

)
, (B.10)

we represent (B.9) as

I (0, 1) =
∫ (m)

q

1

(q + 1)4 − q4

∫ (m̄)

p

[
1

p2 + q4
− 1

p2 + (q + 1)4

]
. (B.11)
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Integrating over p gives

I (0, 1) = (4π)−m̄/2�(−ν)
∫ (m)

q

1

(q + 1)4 − q4

(
q4ν − |q + 1|4ν) (B.12)

with

ν = m̄

2
− 1 = 1 − m

4
− ε

2
. (B.13)

It is useful to represent the difference in the last brackets via the elementary integral

aα − bα = −α (b − a)
∫ 1

0

dx

[a + x(b − a)]1−α (B.14)

with a = q2, b = (q + 1)2 and α = 2ν. The factor (b − a) cancels with a corresponding term
of the denominator (see equation (B.12)). We obtain

I (0, 1) = (−2ν) �(−ν)
(4π)m̄/2

∫ (m)

q

1

q2 + (q + 1)2

∫ 1

0
dx

1(
q2 + 2q1x + x

)1−2ν . (B.15)

Here, we represent the momentum-dependent factors through Laplace integrals

a−α = 1

�(α)

∫ ∞

0
dx xα−1e−ax . (B.16)

This yields

I (0, 1) = (−2ν) �(−ν)
(4π)m̄/2 �(1 − 2ν)

×
∫ 1

0
dx
∫ ∞

0
dy
∫ ∞

0
dz z−2ν

∫ (m)

q

e−(2q2+2q1+1)y e−(q2+2q1x+x)z . (B.17)

Performing the Gaussian integration over q we get

I (0, 1) = (−2ν) �(−ν)
(4π)d/2 �(1 − 2ν)

∫ 1

0
dx
∫ ∞

0
dy
∫ ∞

0
dz

z−2ν

(2y + z)m/2
e− y2−x2 z2+xz2 +yz

2y+z . (B.18)

The integrals over t and z can be decoupled by a rescaling y = zt of the integration variable
y. This gives

I (0, 1) = (−2ν) �(−ν)
(4π)−d/2 �(1 − 2ν)

∫ 1

0
dx
∫ ∞

0

dt

(2t + 1)m/2

∫ ∞

0
dz z−1+ε e−z t2+t+x−x2

2t+1 . (B.19)

The z integral is of the form (B.16). We obtain

I (0, 1) = (−2ν) �(−ν)�(ε)
(4π)d/2 �(1 − 2ν)

∫ 1

0
dx
∫ ∞

0

dt

(2t + 1)m/2−ε (t
2 + t + x − x2)

−ε
. (B.20)

Inside of the last brackets we add and subtract 1/4. Next, we introduce the new integration
variables y = 2t + 1 and s = 2x − 1. A little bit of algebra then yields

I (0, 1) = (−2ν) �(−ν) �(ε)
(4π)d/2 �(1 − 2ν)

22ε

4

∫ 1

−1
ds
∫ ∞

1
dy y−m/2+ε(y2 − s2)−ε . (B.21)

Here the last integration produces a Gauss hypergeometric function:

I (0, 1) = (−2ν) �(−ν) �(ε)
(4π)d/2 �(1 − 2ν)

22ε−1

m − 2 + 2ε

∫ 1

−1
ds 2 F1

(
ε, m−2+2ε

4 ; 2+m+2ε
4 ; s2

)
. (B.22)
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Performing the remaining integration we finally obtain

I (0, q) = q−2ε (4π)−d/2 �(−ν)
�(1 − 2ν)

�(ε)�(1 − ε) 2−2+2ε

×
[ √

π

�(3/2 − ε)
+

4

2 − m − 2ε

�[(2 + m + 2ε)/4]

�[(2 + m − 2ε)/4]

]
, (B.23)

where we reintroduced the initially suppressed trivial dependence on q , taking into account
that ν = 1 − m/4 − ε/2.
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